.. _building-perlmutter: Perlmutter (NERSC) ================== The `Perlmutter cluster `_ is located at NERSC. Introduction ------------ If you are new to this system, **please see the following resources**: * `NERSC user guide `__ * Batch system: `Slurm `__ * `Jupyter service `__ (`documentation `__) * `Filesystems `__: * ``$HOME``: per-user directory, use only for inputs, source and scripts; backed up (40GB) * ``${CFS}/m3239/``: `community file system `__ for users in the project ``m3239`` (or equivalent); moderate performance (20TB default) * ``$PSCRATCH``: per-user `production directory `__; very fast for parallel jobs; purged every 8 weeks (20TB default) .. _building-perlmutter-preparation: Preparation ----------- Use the following commands to download the ImpactX source code: .. code-block:: bash git clone https://github.com/BLAST-ImpactX/impactx.git $HOME/src/impactx On Perlmutter, you can run either on GPU nodes with fast A100 GPUs (recommended) or CPU nodes. .. tab-set:: .. tab-item:: A100 GPUs We use system software modules, add environment hints and further dependencies via the file ``$HOME/perlmutter_gpu_impactx.profile``. Create it now: .. code-block:: bash cp $HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/perlmutter_gpu_impactx.profile.example $HOME/perlmutter_gpu_impactx.profile .. dropdown:: Script Details :color: light :icon: info :animate: fade-in-slide-down .. literalinclude:: perlmutter-nersc/perlmutter_gpu_impactx.profile.example :language: bash Edit the 2nd line of this script, which sets the ``export proj=""`` variable. Perlmutter GPU projects must end in ``..._g``. For example, if you are member of the project ``m3239``, then run ``nano $HOME/perlmutter_gpu_impactx.profile`` and edit line 2 to read: .. code-block:: bash export proj="m3239_g" Exit the ``nano`` editor with ``Ctrl`` + ``O`` (save) and then ``Ctrl`` + ``X`` (exit). .. important:: Now, and as the first step on future logins to Perlmutter, activate these environment settings: .. code-block:: bash source $HOME/perlmutter_gpu_impactx.profile Finally, since Perlmutter does not yet provide software modules for some of our dependencies, install them once: .. code-block:: bash bash $HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/install_gpu_dependencies.sh source ${CFS}/${proj%_g}/${USER}/sw/perlmutter/gpu/venvs/impactx/bin/activate .. dropdown:: Script Details :color: light :icon: info :animate: fade-in-slide-down .. literalinclude:: perlmutter-nersc/install_gpu_dependencies.sh :language: bash .. tab-item:: CPU Nodes We use system software modules, add environment hints and further dependencies via the file ``$HOME/perlmutter_cpu_impactx.profile``. Create it now: .. code-block:: bash cp $HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/perlmutter_cpu_impactx.profile.example $HOME/perlmutter_cpu_impactx.profile .. dropdown:: Script Details :color: light :icon: info :animate: fade-in-slide-down .. literalinclude:: perlmutter-nersc/perlmutter_cpu_impactx.profile.example :language: bash Edit the 2nd line of this script, which sets the ``export proj=""`` variable. For example, if you are member of the project ``m3239``, then run ``nano $HOME/perlmutter_cpu_impactx.profile`` and edit line 2 to read: .. code-block:: bash export proj="m3239" Exit the ``nano`` editor with ``Ctrl`` + ``O`` (save) and then ``Ctrl`` + ``X`` (exit). .. important:: Now, and as the first step on future logins to Perlmutter, activate these environment settings: .. code-block:: bash source $HOME/perlmutter_cpu_impactx.profile Finally, since Perlmutter does not yet provide software modules for some of our dependencies, install them once: .. code-block:: bash bash $HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/install_cpu_dependencies.sh source ${CFS}/${proj}/${USER}/sw/perlmutter/cpu/venvs/impactx/bin/activate .. dropdown:: Script Details :color: light :icon: info :animate: fade-in-slide-down .. literalinclude:: perlmutter-nersc/install_cpu_dependencies.sh :language: bash .. _building-perlmutter-compilation: Compilation ----------- Use the following :ref:`cmake commands ` to compile the application executable: .. tab-set:: .. tab-item:: A100 GPUs .. code-block:: bash cd $HOME/src/impactx rm -rf build_pm_gpu cmake -S . -B build_pm_gpu -DImpactX_COMPUTE=CUDA -DImpactX_FFT=ON cmake --build build_pm_gpu -j 16 The ImpactX application executables are now in ``$HOME/src/impactx/build_pm_gpu/bin/``. Additionally, the following commands will install ImpactX as a Python module: .. code-block:: bash cd $HOME/src/impactx rm -rf build_pm_gpu_py cmake -S . -B build_pm_gpu_py -DImpactX_COMPUTE=CUDA -DImpactX_APP=OFF -DImpactX_FFT=ON -DImpactX_PYTHON=ON cmake --build build_pm_gpu_py -j 16 --target pip_install .. tab-item:: CPU Nodes .. code-block:: bash cd $HOME/src/impactx rm -rf build_pm_cpu cmake -S . -B build_pm_cpu -DImpactX_COMPUTE=OMP -DImpactX_FFT=ON cmake --build build_pm_cpu -j 16 The ImpactX application executables are now in ``$HOME/src/impactx/build_pm_cpu/bin/``. Additionally, the following commands will install ImpactX as a Python module: .. code-block:: bash rm -rf build_pm_cpu_py cmake -S . -B build_pm_cpu_py -DImpactX_COMPUTE=OMP -DImpactX_APP=OFF -DImpactX_FFT=ON -DImpactX_PYTHON=ON cmake --build build_pm_cpu_py -j 16 --target pip_install Now, you can :ref:`submit Perlmutter compute jobs ` for ImpactX :ref:`Python scripts ` (:ref:`example scripts `). Or, you can use the ImpactX executables to submit Perlmutter jobs (:ref:`example inputs `). For executables, you can reference their location in your :ref:`job script ` or copy them to a location in ``$PSCRATCH``. .. _building-perlmutter-update: Update ImpactX & Dependencies ----------------------------- If you already installed ImpactX in the past and want to update it, start by getting the latest source code: .. code-block:: bash cd $HOME/src/impactx # read the output of this command - does it look ok? git status # get the latest ImpactX source code git fetch git pull # read the output of these commands - do they look ok? git status git log # press q to exit And, if needed, - :ref:`update the perlmutter_gpu_impactx.profile or perlmutter_cpu_impactx files `, - log out and into the system, activate the now updated environment profile as usual, - :ref:`execute the dependency install scripts `. As a last step, clean the build directory ``rm -rf $HOME/src/impactx/build_pm_*`` and rebuild ImpactX. .. _running-cpp-perlmutter: Running ------- .. tab-set:: .. tab-item:: A100 (40GB) GPUs The batch script below can be used to run a ImpactX simulation on multiple nodes (change ``-N`` accordingly) on the supercomputer Perlmutter at NERSC. This partition as up to `1536 nodes `__. Replace descriptions between chevrons ``<>`` by relevant values, for instance ```` could be ``plasma_mirror_inputs``. Note that we run one MPI rank per GPU. .. literalinclude:: perlmutter-nersc/perlmutter_gpu.sbatch :language: bash :caption: You can copy this file from ``$HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/perlmutter_gpu.sbatch``. To run a simulation, copy the lines above to a file ``perlmutter_gpu.sbatch`` and run .. code-block:: bash sbatch perlmutter_gpu.sbatch to submit the job. .. tab-item:: A100 (80GB) GPUs Perlmutter has `256 nodes `__ that provide 80 GB HBM per A100 GPU. In the A100 (40GB) batch script, replace ``-C gpu`` with ``-C gpu&hbm80g`` to use these large-memory GPUs. .. tab-item:: CPU Nodes The Perlmutter CPU partition as up to `3072 nodes `__, each with 2x AMD EPYC 7763 CPUs. .. literalinclude:: perlmutter-nersc/perlmutter_cpu.sbatch :language: bash :caption: You can copy this file from ``$HOME/src/impactx/docs/source/install/hpc/perlmutter-nersc/perlmutter_cpu.sbatch``. .. _post-processing-perlmutter: Post-Processing --------------- For post-processing, most users use Python via NERSC's `Jupyter service `__ (`documentation `__). As a one-time preparatory setup, log into Perlmutter via SSH and do *not* source the ImpactX profile script above. Create your own Conda environment and `Jupyter kernel `__ for post-processing: .. code-block:: bash module load python conda config --set auto_activate_base false # create conda environment rm -rf $HOME/.conda/envs/impactx-pm-postproc conda create --yes -n impactx-pm-postproc -c conda-forge mamba conda-libmamba-solver conda activate impactx-pm-postproc conda config --set solver libmamba mamba install --yes -c conda-forge python ipykernel ipympl matplotlib numpy pandas yt openpmd-viewer openpmd-api h5py fast-histogram dask dask-jobqueue pyarrow # create Jupyter kernel rm -rf $HOME/.local/share/jupyter/kernels/impactx-pm-postproc/ python -m ipykernel install --user --name impactx-pm-postproc --display-name ImpactX-PM-PostProcessing echo -e '#!/bin/bash\nmodule load python\nsource activate impactx-pm-postproc\nexec "$@"' > $HOME/.local/share/jupyter/kernels/impactx-pm-postproc/kernel-helper.sh chmod a+rx $HOME/.local/share/jupyter/kernels/impactx-pm-postproc/kernel-helper.sh KERNEL_STR=$(jq '.argv |= ["{resource_dir}/kernel-helper.sh"] + .' $HOME/.local/share/jupyter/kernels/impactx-pm-postproc/kernel.json | jq '.argv[1] = "python"') echo ${KERNEL_STR} | jq > $HOME/.local/share/jupyter/kernels/impactx-pm-postproc/kernel.json exit When opening a Jupyter notebook on `https://jupyter.nersc.gov `__, just select ``ImpactX-PM-PostProcessing`` from the list of available kernels on the top right of the notebook. Additional software can be installed later on, e.g., in a Jupyter cell using ``!mamba install -y -c conda-forge ...``. Software that is not available via conda can be installed via ``!python -m pip install ...``.