|
ImpactX
|
Functions | |
| template<typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp2_integrate (RefPart &refpart, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| template<typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp2_integrate_split3 (RefPart &refpart, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| template<typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp4_integrate (RefPart &refpart, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| template<typename T_Real, typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp2_integrate_particle (amrex::SmallVector< T_Real, 6, 1 > &particle, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| template<typename T_Real, typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp4_integrate_particle (amrex::SmallVector< T_Real, 6, 1 > &particle, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| template<typename T_Real, typename T_Element> | |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void | symp6_integrate_particle (amrex::SmallVector< T_Real, 6, 1 > &particle, amrex::ParticleReal const zin, amrex::ParticleReal const zout, int const nsteps, T_Element const &element) |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp2_integrate | ( | RefPart & | refpart, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A second-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2. This is a generalization of the second- order leapfrog algorithm. For a detailed overview:
E. Hairer et al, Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations, 2nd ed, Springer, Berlin, 2006.
| refpart | Reference particle data |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp2_integrate_particle | ( | amrex::SmallVector< T_Real, 6, 1 > & | particle, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A second-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2. This is a generalization of the second- order leapfrog algorithm. For a detailed overview:
E. Hairer et al, Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations, 2nd ed, Springer, Berlin, 2006.
| particle | Particle phase space data in a 6-vector |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp2_integrate_split3 | ( | RefPart & | refpart, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A second-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2 + H_3. This is the result of applying the two-terms splitting of symp2_integrate twice in succession. The form shown here appears, for example, in:
R. D. Ryne, Computational Methods in Accelerator Physics, USPAS lecture notes, 2009.
| refpart | Reference particle data |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp4_integrate | ( | RefPart & | refpart, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A fourth-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2. This is the result of applying the two-terms splitting of symp2_integrate together with the method of Yoshida.
H. Yoshida, Phys. Lett. A 150, 292-268 (1990).
The form shown here appears, for example, in:
E. Forest and R. D. Ruth, Physica D 43, 105-117 (1990).
| refpart | Reference particle data |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp4_integrate_particle | ( | amrex::SmallVector< T_Real, 6, 1 > & | particle, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A fourth-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2. This is the result of applying the two-terms splitting of symp2_integrate together with the method of Yoshida.
H. Yoshida, Phys. Lett. A 150, 292-268 (1990).
The form shown here appears, for example, in:
E. Forest and R. D. Ruth, Physica D 43, 105-117 (1990).
| particle | Particle phase space data in a 6-vector |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |
| AMREX_GPU_HOST_DEVICE AMREX_FORCE_INLINE void impactx::integrators::symp6_integrate_particle | ( | amrex::SmallVector< T_Real, 6, 1 > & | particle, |
| amrex::ParticleReal const | zin, | ||
| amrex::ParticleReal const | zout, | ||
| int const | nsteps, | ||
| T_Element const & | element ) |
A sixth-order symplectic integrator based on a Hamiltonian splitting H = H_1 + H_2. The implementation below requires a reduced number of map evaluations (15 total) compared to direct use of the Yoshida construction, which requires three compositions of a fourth-order integrator step, each involving seven map evaluations (when expressed in the form obtained by Forest and Ruth, above). It is based on Section 5 of:
H. Yoshida, Phys. Lett. A 150, 292-268 (1990),
and appears also in Section V.3.2 (3.11) of:
E. Hairer et al, Geometric Numerical Integration, 2nd ed., Springer-Verlag, Berlin, 2006.
| particle | Particle phase space data in a 6-vector |
| zin | Initial value of independent variable (z-location) |
| zout | Final value of independent variable (z-location) |
| nsteps | Number of integration steps |
| element | Element defining the two maps associated with H_1 and H_2 |