FODO Cell

Stable FODO cell with a zero-current phase advance of 67.8 degrees.

The matched Twiss parameters at entry are:

  • \(\beta_\mathrm{x} = 2.82161941\) m

  • \(\alpha_\mathrm{x} = -1.59050035\)

  • \(\beta_\mathrm{y} = 2.82161941\) m

  • \(\alpha_\mathrm{y} = 1.59050035\)

We use a 2 GeV electron beam with initial unnormalized rms emittance of 2 nm.

The second moments of the particle distribution after the FODO cell should coincide with the second moments of the particle distribution before the FODO cell, to within the level expected due to noise due to statistical sampling.

In this test, the initial and final values of \(\sigma_x\), \(\sigma_y\), \(\sigma_t\), \(\epsilon_x\), \(\epsilon_y\), and \(\epsilon_t\) must agree with nominal values.

Run

This example can be run either as:

  • Python script: python3 run_fodo.py or

  • ImpactX executable using an input file: impactx input_fodo.in

For MPI-parallel runs, prefix these lines with mpiexec -n 4 ... or srun -n 4 ..., depending on the system.

Listing 5 You can copy this file from examples/fodo/run_fodo.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

from impactx import ImpactX, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.space_charge = False
# sim.diagnostics = False  # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# load a 2 GeV electron beam with an initial
# unnormalized rms emittance of 2 nm
kin_energy_MeV = 2.0e3  # reference energy
bunch_charge_C = 1.0e-9  # used with space charge
npart = 10000  # number of macro particles

#   reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(-1.0).set_mass_MeV(0.510998950).set_kin_energy_MeV(kin_energy_MeV)

#   particle bunch
distr = distribution.Waterbag(
    lambdaX=3.9984884770e-5,
    lambdaY=3.9984884770e-5,
    lambdaT=1.0e-3,
    lambdaPx=2.6623538760e-5,
    lambdaPy=2.6623538760e-5,
    lambdaPt=2.0e-3,
    muxpx=-0.846574929020762,
    muypy=0.846574929020762,
    mutpt=0.0,
)
sim.add_particles(bunch_charge_C, distr, npart)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice)
ns = 25  # number of slices per ds in the element
fodo = [
    monitor,
    elements.Drift(name="drift1", ds=0.25, nslice=ns),
    monitor,
    elements.Quad(name="quad1", ds=1.0, k=1.0, nslice=ns),
    monitor,
    elements.Drift(name="drift2", ds=0.5, nslice=ns),
    monitor,
    elements.Quad(name="quad2", ds=1.0, k=-1.0, nslice=ns),
    monitor,
    elements.Drift(name="drift3", ds=0.25, nslice=ns),
    monitor,
]
# assign a fodo segment
sim.lattice.extend(fodo)

# run simulation
sim.track_particles()

# clean shutdown
sim.finalize()
Listing 6 You can copy this file from examples/fodo/input_fodo.in.
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.kin_energy = 2.0e3
beam.charge = 1.0e-9
beam.particle = electron
beam.distribution = waterbag
beam.lambdaX = 3.9984884770e-5
beam.lambdaY = beam.lambdaX
beam.lambdaT = 1.0e-3
beam.lambdaPx = 2.6623538760e-5
beam.lambdaPy = beam.lambdaPx
beam.lambdaPt = 2.0e-3
beam.muxpx = -0.846574929020762
beam.muypy = -beam.muxpx
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor drift1 monitor quad1 monitor drift2 monitor quad2 monitor drift3 monitor
lattice.nslice = 25

monitor.type = beam_monitor
monitor.backend = h5

drift1.type = drift
drift1.ds = 0.25

quad1.type = quad
quad1.ds = 1.0
quad1.k = 1.0

drift2.type = drift
drift2.ds = 0.5

quad2.type = quad
quad2.ds = 1.0
quad2.k = -1.0

drift3.type = drift
drift3.ds = 0.25


###############################################################################
# Algorithms
###############################################################################
algo.space_charge = false


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true

Analyze

We run the following script to analyze correctness:

Script analysis_fodo.py
Listing 7 You can copy this file from examples/fodo/analysis_fodo.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#


import numpy as np
import openpmd_api as io
from scipy.stats import moment


def get_moments(beam):
    """Calculate standard deviations of beam position & momenta
    and emittance values

    Returns
    -------
    sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
    """
    sigx = moment(beam["position_x"], moment=2) ** 0.5  # variance -> std dev.
    sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
    sigy = moment(beam["position_y"], moment=2) ** 0.5
    sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
    sigt = moment(beam["position_t"], moment=2) ** 0.5
    sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

    epstrms = beam.cov(ddof=0)
    emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
    emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
    emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

    return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
beam_final = series.iterations[last_step].particles["beam"]
final = beam_final.to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = 2.2 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        7.5451170454175073e-005,
        7.5441588239210947e-005,
        9.9775878164077539e-004,
        1.9959540393751392e-009,
        2.0175015289132990e-009,
        2.0013820193294972e-006,
    ],
    rtol=rtol,
    atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(final)
s_ref = beam_final.get_attribute("s_ref")
gamma_ref = beam_final.get_attribute("gamma_ref")
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}\n"
    f"  s_ref={s_ref:e} gamma_ref={gamma_ref:e}"
)

atol = 0.0  # ignored
rtol = 2.2 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, s_ref, gamma_ref],
    [
        7.4790118496224206e-005,
        7.5357525169680140e-005,
        9.9775879288128088e-004,
        1.9959539836392703e-009,
        2.0175014668882125e-009,
        2.0013820380883801e-006,
        3.000000,
        3.914902e003,
    ],
    rtol=rtol,
    atol=atol,
)

Visualize

You can run the following script to visualize the beam evolution over time:

Script plot_fodo.py
Listing 8 You can copy this file from examples/fodo/plot_fodo.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import argparse
import glob
import re

import matplotlib.pyplot as plt
import openpmd_api as io
import pandas as pd
from matplotlib.ticker import MaxNLocator


def read_file(file_pattern):
    for filename in glob.glob(file_pattern):
        df = pd.read_csv(filename, delimiter=r"\s+")
        if "step" not in df.columns:
            step = int(re.findall(r"[0-9]+", filename)[0])
            df["step"] = step
        yield df


def read_time_series(file_pattern):
    """Read in all CSV files from each MPI rank (and potentially OpenMP
    thread). Concatenate into one Pandas dataframe.

    Returns
    -------
    pandas.DataFrame
    """
    return pd.concat(
        read_file(file_pattern),
        axis=0,
        ignore_index=True,
    )  # .set_index('id')


# options to run this script
parser = argparse.ArgumentParser(description="Plot the FODO benchmark.")
parser.add_argument(
    "--save-png", action="store_true", help="non-interactive run: save to PNGs"
)
args = parser.parse_args()


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()
ref_particle = read_time_series("diags/ref_particle.*")

# steps & corresponding z
steps = list(series.iterations)

z = list(
    map(lambda step: ref_particle[ref_particle["step"] == step].z.values[0], steps)
)

# scaling to units
millimeter = 1.0e3  # m->mm
mrad = 1.0e3  # ImpactX uses "static units": momenta are normalized by the magnitude of the momentum of the reference particle p0: px/p0 (rad)
# mm_mrad = 1.e6
nm_rad = 1.0e9

# read reduced diagnostics
rbc = read_time_series("diags/reduced_beam_characteristics.*")

s = rbc["s"]
sigma_x = rbc["sigma_x"] * millimeter
sigma_y = rbc["sigma_y"] * millimeter
sigma_t = rbc["sigma_t"] * millimeter
emittance_x = rbc["emittance_x"] * nm_rad
emittance_y = rbc["emittance_y"] * nm_rad
emittance_t = rbc["emittance_t"] * nm_rad

length = len(s) - 1

# select a single particle by id
# particle_42 = beam[beam["id"] == 42]
# print(particle_42)

# steps & corresponding z
steps = list(series.iterations)

# print beam transverse size over steps
f = plt.figure(figsize=(9, 4.8))
ax1 = f.gca()
im_sigx = ax1.plot(s, sigma_x, label=r"$\sigma_x$")
im_sigy = ax1.plot(s, sigma_y, label=r"$\sigma_y$")
ax2 = ax1.twinx()
ax2.set_prop_cycle(None)  # reset color cycle
im_emittance_x = ax2.plot(s, emittance_x, ":", label=r"$\epsilon_x$")
im_emittance_y = ax2.plot(s, emittance_y, ":", label=r"$\epsilon_y$")

ax1.legend(
    handles=im_sigx + im_sigy + im_emittance_x + im_emittance_y, loc="lower center"
)
ax1.set_xlabel(r"$z$ [m]")
ax1.set_ylabel(r"$\sigma_{x,y}$ [mm]")
ax2.set_ylabel(r"$\epsilon_{x,y}$ [nm]")
ax2.set_ylim([1.5, 2.5])
ax1.xaxis.set_major_locator(MaxNLocator(integer=True))
plt.tight_layout()
if args.save_png:
    plt.savefig("fodo_sigma.png")
else:
    plt.show()


# beam transverse scatter plot over steps
num_plots_per_row = len(steps)
fig, axs = plt.subplots(
    3, num_plots_per_row, figsize=(9, 4.8), sharex="row", sharey="row"
)

ncol_ax = -1
for step in steps:
    # plot initial distribution & at exit of each element
    ncol_ax += 1

    # x-y
    ax = axs[(0, ncol_ax)]
    beam_at_step = series.iterations[step].particles["beam"].to_df()
    ax.scatter(
        beam_at_step.position_x.multiply(millimeter),
        beam_at_step.position_y.multiply(millimeter),
        s=0.01,
    )

    ax.set_title(f"$z={z[ncol_ax]:.2f}$ [m]")
    ax.set_xlabel(r"$x$ [mm]")

    # x-px
    ax = axs[(1, ncol_ax)]
    beam_at_step = series.iterations[step].particles["beam"].to_df()
    ax.scatter(
        beam_at_step.position_x.multiply(millimeter),
        beam_at_step.momentum_x.multiply(mrad),
        s=0.01,
    )
    ax.set_xlabel(r"$x$ [mm]")

    # y-py
    ax = axs[(2, ncol_ax)]
    beam_at_step = series.iterations[step].particles["beam"].to_df()
    ax.scatter(
        beam_at_step.position_y.multiply(millimeter),
        beam_at_step.momentum_y.multiply(mrad),
        s=0.01,
    )
    ax.set_xlabel(r"$y$ [mm]")

axs[(0, 0)].set_ylabel(r"$y$ [mm]")
axs[(1, 0)].set_ylabel(r"$p_x$ [mrad]")
axs[(2, 0)].set_ylabel(r"$p_y$ [mrad]")
plt.tight_layout()
if args.save_png:
    plt.savefig("fodo_scatter.png")
else:
    plt.show()
focusing, defocusing and preserved emittance in our FODO cell benchmark.

Fig. 1 FODO transversal beam width and emittance evolution

focusing, defocusing and phase space rotation in our FODO cell benchmark.

Fig. 2 FODO transversal beam width and phase space evolution

FODO Cell Using Envelope Tracking

This identical to the FODO example, except that envelope tracking is used instead of particle tracking.

Stable FODO cell with a zero-current phase advance of 67.8 degrees.

The matched Twiss parameters at entry are:

  • \(\beta_\mathrm{x} = 2.82161941\) m

  • \(\alpha_\mathrm{x} = -1.59050035\)

  • \(\beta_\mathrm{y} = 2.82161941\) m

  • \(\alpha_\mathrm{y} = 1.59050035\)

We use a 2 GeV electron beam with initial unnormalized rms emittance of 2 nm.

The second moments of the particle distribution after the FODO cell should coincide with the second moments of the particle distribution before the FODO cell, to within the level expected due to$

In this test, the initial and final values of \(\sigma_x\), \(\sigma_y\), \(\sigma_t\), \(\epsilon_x\), \(\epsilon_y\), and \(\epsilon_t\) must agree with nominal values.

Run

This example can be run either as:

  • Python script: python3 run_fodo_envelope.py or

  • ImpactX executable using an input file: impactx input_fodo_envelope.in

For MPI-parallel runs, prefix these lines with mpiexec -n 4 ... or srun -n 4 ..., depending on the system.

Listing 9 You can copy this file from examples/fodo/run_fodo_envelope.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

from impactx import ImpactX, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.space_charge = False
# sim.diagnostics = False  # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# model a 2 GeV electron beam with an initial
# unnormalized rms emittance of 2 nm
kin_energy_MeV = 2.0e3  # reference energy

#   reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(-1.0).set_mass_MeV(0.510998950).set_kin_energy_MeV(kin_energy_MeV)

#   particle bunch
distr = distribution.Waterbag(
    lambdaX=3.9984884770e-5,
    lambdaY=3.9984884770e-5,
    lambdaT=1.0e-3,
    lambdaPx=2.6623538760e-5,
    lambdaPy=2.6623538760e-5,
    lambdaPt=2.0e-3,
    muxpx=-0.846574929020762,
    muypy=0.846574929020762,
    mutpt=0.0,
)

sim.init_envelope(ref, distr)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice)
ns = 25  # number of slices per ds in the element
fodo = [
    monitor,
    elements.Drift(name="drift1", ds=0.25, nslice=ns),
    monitor,
    elements.Quad(name="quad1", ds=1.0, k=1.0, nslice=ns),
    monitor,
    elements.Drift(name="drift2", ds=0.5, nslice=ns),
    monitor,
    elements.Quad(name="quad2", ds=1.0, k=-1.0, nslice=ns),
    monitor,
    elements.Drift(name="drift3", ds=0.25, nslice=ns),
    monitor,
]
# assign a fodo segment
sim.lattice.extend(fodo)

# run simulation
sim.track_envelope()

# clean shutdown
sim.finalize()
Listing 10 You can copy this file from examples/fodo/input_fodo_envelope.in.
###############################################################################
# Particle Beam(s)
###############################################################################
beam.kin_energy = 2.0e3
beam.particle = electron
beam.distribution = waterbag
beam.lambdaX = 3.9984884770e-5
beam.lambdaY = beam.lambdaX
beam.lambdaT = 1.0e-3
beam.lambdaPx = 2.6623538760e-5
beam.lambdaPy = beam.lambdaPx
beam.lambdaPt = 2.0e-3
beam.muxpx = -0.846574929020762
beam.muypy = -beam.muxpx
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor drift1 monitor quad1 monitor drift2 monitor quad2 monitor drift3 monitor
lattice.nslice = 25

monitor.type = beam_monitor
monitor.backend = h5

drift1.type = drift
drift1.ds = 0.25

quad1.type = quad
quad1.ds = 1.0
quad1.k = 1.0

drift2.type = drift
drift2.ds = 0.5

quad2.type = quad
quad2.ds = 1.0
quad2.k = -1.0

drift3.type = drift
drift3.ds = 0.25


###############################################################################
# Algorithms
###############################################################################
algo.track = "envelope"


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true

Analyze

We run the following script to analyze correctness:

Script analysis_fodo_envelope.py
Listing 11 You can copy this file from examples/fodo/analysis_fodo_envelope.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import glob
import re

import numpy as np
import pandas as pd


def read_file(file_pattern):
    for filename in glob.glob(file_pattern):
        df = pd.read_csv(filename, delimiter=r"\s+")
        if "step" not in df.columns:
            step = int(re.findall(r"[0-9]+", filename)[0])
            df["step"] = step
        yield df


def read_time_series(file_pattern):
    """Read in all CSV files from each MPI rank (and potentially OpenMP
    thread). Concatenate into one Pandas dataframe.

    Returns
    -------
    pandas.DataFrame
    """
    return pd.concat(
        read_file(file_pattern),
        axis=0,
        ignore_index=True,
    )  # .set_index('id')


# read reduced diagnostics
rbc = read_time_series("diags/reduced_beam_characteristics.*")

s = rbc["s"]
sigma_x = rbc["sigma_x"]
sigma_y = rbc["sigma_y"]
sigma_t = rbc["sigma_t"]
emittance_x = rbc["emittance_x"]
emittance_y = rbc["emittance_y"]
emittance_t = rbc["emittance_t"]

sigma_xi = sigma_x.iloc[0]
sigma_yi = sigma_y.iloc[0]
sigma_ti = sigma_t.iloc[0]
emittance_xi = emittance_x.iloc[0]
emittance_yi = emittance_y.iloc[0]
emittance_ti = emittance_t.iloc[0]

length = len(s) - 1

sf = s.iloc[length]
sigma_xf = sigma_x.iloc[length]
sigma_yf = sigma_y.iloc[length]
sigma_tf = sigma_t.iloc[length]
emittance_xf = emittance_x.iloc[length]
emittance_yf = emittance_y.iloc[length]
emittance_tf = emittance_t.iloc[length]


print("Initial Beam:")
print(f"  sigx={sigma_xi:e} sigy={sigma_yi:e} sigt={sigma_ti:e}")
print(
    f"  emittance_x={emittance_xi:e} emittance_y={emittance_yi:e} emittance_t={emittance_ti:e}"
)

atol = 0.0  # ignored
rtol = 1.0e-2  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigma_xi, sigma_yi, sigma_ti, emittance_xi, emittance_yi, emittance_ti],
    [
        7.5451170454175073e-005,
        7.5441588239210947e-005,
        9.9775878164077539e-004,
        1.9959540393751392e-009,
        2.0175015289132990e-009,
        2.0013820193294972e-006,
    ],
    rtol=rtol,
    atol=atol,
)


print("")
print("Final Beam:")
print(f"  sigx={sigma_xf:e} sigy={sigma_yf:e} sigt={sigma_tf:e}")
print(
    f"  emittance_x={emittance_xf:e} emittance_y={emittance_yf:e} emittance_t={emittance_tf:e}"
)

atol = 0.0  # ignored
rtol = 1.0e-2  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigma_xf, sigma_yf, sigma_tf, emittance_xf, emittance_yf, emittance_tf],
    [
        7.4790118496224206e-005,
        7.5357525169680140e-005,
        9.9775879288128088e-004,
        1.9959539836392703e-009,
        2.0175014668882125e-009,
        2.0013820380883801e-006,
    ],
    rtol=rtol,
    atol=atol,
)

FODO Cell Using Nonlinear Tracking

This is identical to the example examples-fodo, except that fully nonlinear tracking is used based on the exact relativistic Hamiltonian.

The kinematic nonlinear effects are essentially negligible, so this is primarily a test that the nonlinear elements correctly reproduce the results of linear tracking.

The second moments of the particle distribution after the FODO cell should coincide with the second moments of the particle distribution before the FODO cell, to within the level expected due to noise due to the finite particle population.

In this test, the initial and final values of \(\sigma_x\), \(\sigma_y\), \(\sigma_t\), \(\epsilon_x\), \(\epsilon_y\), and \(\epsilon_t\) must agree with nominal values.

Run

This example can be run either as:

  • Python script: python3 run_fodo_exact.py or

  • ImpactX executable using an input file: impactx input_fodo_exact.in

For MPI-parallel runs, prefix these lines with mpiexec -n 4 ... or srun -n 4 ..., depending on the system.

Listing 12 You can copy this file from examples/fodo/run_fodo_exact.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

from impactx import ImpactX, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.space_charge = False
# sim.diagnostics = False  # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# load a 2 GeV electron beam with an initial
# unnormalized rms emittance of 2 nm
kin_energy_MeV = 2.0e3  # reference energy
bunch_charge_C = 1.0e-9  # used with space charge
npart = 10000  # number of macro particles

#   reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(-1.0).set_mass_MeV(0.510998950).set_kin_energy_MeV(kin_energy_MeV)

#   particle bunch
distr = distribution.Waterbag(
    lambdaX=3.9984884770e-5,
    lambdaY=3.9984884770e-5,
    lambdaT=1.0e-3,
    lambdaPx=2.6623538760e-5,
    lambdaPy=2.6623538760e-5,
    lambdaPt=2.0e-3,
    muxpx=-0.846574929020762,
    muypy=0.846574929020762,
    mutpt=0.0,
)
sim.add_particles(bunch_charge_C, distr, npart)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice)
ns = 1  # number of slices per ds in the element
fodo = [
    monitor,
    elements.ExactDrift(name="drift1", ds=0.25, nslice=ns),
    monitor,
    elements.ExactQuad(name="quad1", ds=1.0, k=1.0, int_order=4, nslice=ns, mapsteps=4),
    monitor,
    elements.ExactDrift(name="drift2", ds=0.5, nslice=ns),
    monitor,
    elements.ExactQuad(
        name="quad2", ds=1.0, k=-1.0, int_order=4, nslice=ns, mapsteps=4
    ),
    monitor,
    elements.ExactDrift(name="drift3", ds=0.25, nslice=ns),
    monitor,
]
# assign a fodo segment
sim.lattice.extend(fodo)

# run simulation
sim.track_particles()

# clean shutdown
sim.finalize()
Listing 13 You can copy this file from examples/fodo/input_fodo_exact.in.
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.kin_energy = 2.0e3
beam.charge = 1.0e-9
beam.particle = electron
beam.distribution = waterbag
beam.lambdaX = 3.9984884770e-5
beam.lambdaY = beam.lambdaX
beam.lambdaT = 1.0e-3
beam.lambdaPx = 2.6623538760e-5
beam.lambdaPy = beam.lambdaPx
beam.lambdaPt = 2.0e-3
beam.muxpx = -0.846574929020762
beam.muypy = -beam.muxpx
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor drift1 monitor quad1 monitor drift2 monitor quad2 monitor drift3 monitor
lattice.nslice = 1

monitor.type = beam_monitor
monitor.backend = h5

drift1.type = drift_exact
drift1.ds = 0.25

quad1.type = quad_exact
quad1.ds = 1.0
quad1.k = 1.0
quad1.int_order = 4
quad1.mapsteps = 4

drift2.type = drift_exact
drift2.ds = 0.5

quad2.type = quad_exact
quad2.ds = 1.0
quad2.k = -1.0
quad2.int_order = 4
quad2.mapsteps = 4

drift3.type = drift_exact
drift3.ds = 0.25


###############################################################################
# Algorithms
###############################################################################
algo.space_charge = false

###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true

Analyze

We run the following script to analyze correctness:

Script analysis_fodo_exact.py
Listing 14 You can copy this file from examples/fodo/analysis_fodo_exact.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#


import numpy as np
import openpmd_api as io
from scipy.stats import moment


def get_moments(beam):
    """Calculate standard deviations of beam position & momenta
    and emittance values

    Returns
    -------
    sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
    """
    sigx = moment(beam["position_x"], moment=2) ** 0.5  # variance -> std dev.
    sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
    sigy = moment(beam["position_y"], moment=2) ** 0.5
    sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
    sigt = moment(beam["position_t"], moment=2) ** 0.5
    sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

    epstrms = beam.cov(ddof=0)
    emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
    emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
    emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

    return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
beam_final = series.iterations[last_step].particles["beam"]
final = beam_final.to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = 2.2 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        7.5451170454175073e-005,
        7.5441588239210947e-005,
        9.9775878164077539e-004,
        1.9959540393751392e-009,
        2.0175015289132990e-009,
        2.0013820193294972e-006,
    ],
    rtol=rtol,
    atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(final)
s_ref = beam_final.get_attribute("s_ref")
gamma_ref = beam_final.get_attribute("gamma_ref")
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}\n"
    f"  s_ref={s_ref:e} gamma_ref={gamma_ref:e}"
)

atol = 0.0  # ignored
rtol = 2.2 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, s_ref, gamma_ref],
    [
        7.4790118496224206e-005,
        7.5357525169680140e-005,
        9.9775879288128088e-004,
        1.9959539836392703e-009,
        2.0175014668882125e-009,
        2.0013820380883801e-006,
        3.000000,
        3.914902e003,
    ],
    rtol=rtol,
    atol=atol,
)